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This letter to the editor is addressed to the recent editorial (Kayser & Tenke, 2005) 
regarding my own paper (Dien, Beal, & Berg, 2005).  I am delighted by the attention our 
contribution received and quite appreciate the comments made by the authors regarding
the importance of the topic of PCA of ERPs, as well as the contribution of our paper 
regarding the utility of Promax rotations.  As one in a series, our present paper continues
to advance this topic using both real and simulated datasets (Curran & Dien, 2003; Dien,
1998; Dien, 1999; Dien, & Frishkoff, 2004; Dien, Frishkoff, Cerbonne, & Tucker, 2003; 
Dien, Frishkoff, & Tucker, 2000; Dien, Spencer, & Donchin, 2003; Dien, Spencer, & 
Donchin, 2004; Dien, Tucker, Potts, & Hartry, 1997; Spencer, Dien, & Donchin, 1999; 
Spencer, Dien, & Donchin, 2001).  From the editorial, it sounds like we are making 
progress towards a consensus on the application of PCA to ERPs.  However, Kayser 
and Tenke's editorial also expressed a number of continuing disagreements with the 
contents of our paper.  In order to further develop this process of forging a consensus, 
this letter is addressed to these disagreements.

First of all, I quite regret their apparent discomfort our work evidently caused (e.g., " it 
seems almost reasonable to become upset", p. 1750).  It was not our original intent to 
highlight our differences of opinion with Kayser and Tenke, much less to upset them; in 
fact, we were urged to address these issues by one of our anonymous reviewers who 
seemed quite insistent that we fully adopt the recommendations of the Kayser and 
Tenke (2003) report.

Overall, there are two separate areas of disagreement, concerning the scaling issue 
(correlation versus covariance) and the restriction (or truncation) of factor solutions.  The
latter involves analytic philosophy and is where Kayser and Tenke have contributed 
particularly useful insights.  The readership may find our contrasting positions and 
reasoning to be illuminating.  The former area involves mathematics and I fear the 
readership may find the Kayser and Tenke (2003) paper and their recent editorial to be 
misleading.  I will first address the mathematical issues and then proceed to the 
analytical issue.  I will then end on some remaining comments regarding the Promax 
rotation.  To keep the discussion simpler, I will only refer to the case of temporal PCA 
wherein the variables are the time points.

Three Scaling Choices

As described in my paper, it is critical that researchers using this technique understand 
that the choice of scaling (correlation or covariance) is made three times during the PCA:
extraction, rotation, and presentation.  These are three separate decisions and so the 
same choice does not have to be made for each step.  For example, a common 
procedure is to use the covariance matrix during the initial extraction but then to use 
correlations during the actual rotation and when presenting the loadings.  This in fact is 
the default procedure in SAS and SPSS when a covariance matrix is being subjected to 
PCA (see below).

My main concern with Kayser and Tenke's discussion in both their 2003 paper and their 
editorial is that they are not clearly distinguishing between these three decisions.  For 
example, their statement in the editorial that "Standard statistical packages (BMDP, 
SPSS, SAS) typically rotate the factor loadings as extracted and weighted" suggests 
they might think that the extraction choice and the rotation choice are typically treated as
a single choice.  The code in the appendix of their 2003 paper also seems to operate in 



this fashion.  For SAS and SPSS this statement is definitely incorrect.  Not only have I 
verified my own Varimax rotation code (which does not work this way) against SAS 
output, I have directly obtained statements to this effect from the companies in question: 
"whether the COV option is on or not, all factor loading matrices are always applied to 
the standardized variables" (SAS Technical Support staff, personal communication, 
2005).  Likewise, "Rotation is based on the standardized (rescaled if the covariance 
matrix was used for extraction) loadings, regardless of whether the covariance or 
correlation matrix was analyzed" (David Matheson, SPSS statistical support, personal 
communication, 2005).  Regarding BMDP, the BMDP technical support was not able to 
answer this question.  Furthermore, their manual is rather unclear on this point and may 
in fact have contributed to our disagreements on this matter.  Since I do not have access
to BMDP software, I have not been able to test it directly.

In any case, the rotation choice is for the most part moot since, according to the 
mathematical proof I provided in my paper, Kaiser normalization cancels out the 
difference between correlation and covariance loadings.  Kaiser normalization is the 
default in SAS, SPSS, and probably in most other statistics packages.  "Kaiser 
normalization is the default"  (SAS Technical Support staff, personal communication, 
2005).  "If Kaiser normalization was not suppressed by the NOKAISER keyword, it is 
applied to the standardized loadings"  (David Matheson, SPSS statistical support, 
personal communication, 2005).  It is again unclear what BMDP does in this regard.

As for the presentation choice, this is a matter of communication, not analysis.  Saying 
that the choice of presentation scaling changes the analysis is like saying that deciding 
whether to graph the means or the standard deviations of the cells changes a dataset.  It
is just a choice of how to present the results once the analysis is finished.  In other 
words, when Kayser and Tenke (2003) state in footnote 2 that "To clearly distinguish this
extraction method from the regular use of the covariance matrix, we will refer to these 
two procedures as standardized and unstandardized covariance-based PCA solutions" 
and present different-looking waveforms for these two "options" in Figure 4, what they 
are really doing is presenting the same analysis twice, using two different scalings.

What are these two scalings?  The results from the "standardized" covariance matrix is 
simply the factor loadings (correlations between the variables and the factor scores).  
The "unstandardized" covariance matrix is simply the identical factor loadings but with 
each one multiplied by the standard deviation of the corresponding variable (since each 
variable has a different standard deviation, the resulting waveform will have a somewhat 
different shape).

In all, I am in agreement with Kayser and Tenke on two points concerning the 
mathematical issues.  The first is that they demonstrated that covariance relationship 
matrices are a better choice than correlation relationship matrices.  While this has been 
previously reported with real data (Curry et al., 1983), it was well worth replicating.  
Thus, I compliment the authors on examining this issue, given contradictory 
recommendations in reviews on the subject (Chapman & McCrary, 1995; Donchin, & 
Heffley, 1979; Möcks, & Verleger, 1991; van Boxtel, 1998).  Combined with my own 
simulation analysis (Dien, Beal, & Berg, 2005), I think we have established strong 
grounds for considering this point settled.  The second is that they demonstrated that 
choosing covariance scaling at the presentation step yields waveforms that resemble the
original ERPs more closely.  This, too, is a point that appears to have attained a fair 
amount of consensus (cf. Dien, Tucker, Potts, & Hartry, 1997; Möcks & Verleger, 1991). 



I therefore completely agree that "microvolt-scaled factor loadings are preferable when 
interpreting PCA solutions".

Disagreements Regarding Scaling Choices

We part ways when they express concern that using covariance (micro-volt) scaling at 
the presentation step would "necessarily requires an additional recalculation of the 
overall and explained variance contributions, and an additional reranking of the factors." 
Fortunately, covariance scaling can be used during the presentation step without these 
complications.  The choice of presentation scaling is simply a matter of data 
presentation; because the actual data do not change, no change in rankings is 
necessary.  Furthermore, the conversion from correlation to covariance scaling is 
fortunately readily performed in an Excel spreadsheet.  For example, put the correlation 
factor loadings in Column1.  Put the standard deviations of the variables in Column2.  In 
Column3, put the formula "= Column1 * Column2".  Given the ease with which 
covariance scaling can be obtained for the presentation step, I think there is little reason 
not to use it for waveform plots of the factor loadings.

Kayser and Tenke (2005) argue that "While rescaling would indeed increase the 
similarity of corresponding waveforms, and in fact result in identical waveforms for 
the unrestricted solutions, the main point is that the sequence of the extracted factors 
differs due to differences in explained variance."  This statement is incorrect in two ways.
The first is that, as noted earlier, the only difference between what they call 
"standardized and unstandardized" covariance analyses is the presentation scaling so 
they are exactly the same, whether or not the solution is restricted or unrestricted.  The 
difference is only a choice of how to present the data.  Secondly, the statement is 
incorrect in that the sequence of the factors does not have to differ.  The ordering of 
factors is an arbitrary decision and thus up to the author.  An author can convert 
correlation-scaled factor loadings to covariance-scaling at the presentation step (or vice-
versa), as described in the preceding paragraph, but retain the original ordering for the 
sake of comparability.  Ultimately, if the ordering of the factors is important to a paper's 
analysis logic, it would be helpful for the authors to describe how the ordering is being 
determined and its role in the analysis process.

A further misstatement is made in the next sentence "As shown in our Fig. 4 for real 
ERP data, and in our Fig. 3 for an illustrative example constructed to explain the 
underlying principle, correlation loadings can result in erroneous high-variance factors."  
Again, choice of the presentation scaling only affects the appearance of the factor 
waveforms and does not affect their nature.  Thus, while I agree that using correlation 
scaling at the extraction step results in degraded solutions in comparison to covariance 
scaling, the "erroneous" factors that they refer to for the "covariance matrix using 
standardized loadings" in Figures 3 & 4 differ from the "covariance matrix using 
unstandardized loadings" only in the appearance of the waveforms due to the choice of 
the presentation scaling.

How might scaling of the presented factor loadings produce such apparent "erroneous" 
factors?  Not having access to their data, I cannot say with certainty.  On the basis of my
own experience I expect it is due to the scaling choice increasing the salience of the 
noise in relatively inactive time points.  When using correlation scaling to present factor 
loadings, the inactive time points have been given equal weighting as the active time 
points.  It is as if one had measured a group of mice (baseline noise), a group of sky 



scrapers (P300), taken their mean heights, divided the heights by their respective 
standard deviations, and then graphed the resulting values.  One might very well obtain 
a chart in which the mice appear to be the size of sky scrapers (or in this case, clearly 
erroneous peaks that do not correspond to ERP features in the grand average).  
Obviously, researchers are unlikely to desire such an analysis.  Remember, PCA is often
applied to questionnaire data where the scaling is meaningless.  When the variables do 
share a meaningful scaling (feet for mice and skyscrapers, microvolts for ERPs), it does 
not make sense to use correlation scaling when presenting the factor loadings if the goal
is to directly relate them to the original features (as in comparing the shape of the 
waveforms); doing so can cause a perfectly good PCA solution look like it has 
"erroneous" features.

This conclusion is not affected by the following statement made by Kayser and Tenke in 
their editorial: "However, if a retention criterion is applied before rotation, a non-identical 
set of factors may be submitted to the rotation procedure, resulting in the computation of 
different communalities, which leads to a different Kaiser’s normalization, and finally 
different rotated loadings…"  Once again, while we agree that the extraction step scaling
will make a difference (and have acknowledged the value of this point), this is the only 
choice that is made prior to the rotation procedure.  The Kaiser normalization (if used) 
makes the rotation choice moot and the presentation choice does not affect the analysis 
itself, only its presentation.

Analytical Philosphy

Moving on to the analytical issue, we encounter an issue where there is no 
mathematically correct answer and one is instead concerned with contrasting priorities 
and goals regarding analysis.  The essential issue is that Kayser and Tenke (2003) 
advocated utilizing unrestricted solutions wherein all the factors are retained whereas 
Dien, Beal, and Berg (2005) advocated using a truncated solution on the grounds that 
having to examine so many factors would present multiple comparison problems.

In their editorial, Kayser and Tenke (2005) clarify that they are advocating a threshold 
approach in which only factors accounting for more than some level of variance are 
evaluated for meaningfulness.  Their original report did not specify such an approach nor
any criteria for setting such a threshold.  The expanded procedure as described in the 
editorial therefore represents an important clarification and/or modification of the original 
report.

My own position in this regard is that I feel uncomfortable with equating size of an effect 
with meaningfulness.  However, this is a disagreement that cannot be resolved with 
mathematics and I do not believe that either of us have put this issue to any kind of 
conclusive test.  While it is indeed striking that the F-tests in their 2003 study yielded 
more significance with the unrestricted solution, without knowing the true state of affairs 
it is unclear whether this represents an advance away from Type II error or a retreat into 
Type I error.  It would be helpful to replicate this analysis with a reliable and well-
characterized effect such as an oddball task.  Kayser and Tenke describe having done 
so but did not present the actual results so it is not possible to evaluate them.  I do think 
that Kayser and Tenke's proposal is not unreasonable and that further tests are quite 
merited.  Indeed, only by examining many datasets, both real and simulated, will it be 
possible to make any claims of generalizability since this is not an issue that is amenable
to mathematical proofs.



Promax Rotation

Some final comments regarding the Promax rotation may be helpful.  Kayser and Tenke 
(2005)'s editorial made some positive comments about the simulation results with the 
Promax rotation, which we appreciate.  They do evince some remaining skepticism, 
which is reasonable.  I would therefore like to end with some final comments to further 
reinforce the recommendation to utilize Promax rotations.  While they suggest that the 
orthogonal rotations yielded by Varimax might be considered to be more "parsimonious" 
and hence more useful, it is well to keep in mind that the principle of parsimony implicitly 
includes the condition of accuracy.  For example, the most parsimonious description 
possible of an ERP dataset would be to claim that it contains only a single ERP 
component (with many peaks).  While this is parsimonious in the sense of being very 
simple, it is clearly incorrect and not useful for typical ERP datasets.  In the same 
fashion, I argue that orthogonal factors, while simple, are not accurate and hence not 
useful; in this sense, they are not in fact parsimonious.  As has been said by others, the 
brain is not orthogonal.

Secondly, they note that the Promax results were obtained with simulation data and 
hence tests with real data would be desirable to have more confidence in this finding.  
Such a test is already available.  As described elsewhere (Dien, Spencer, & Donchin, 
2003), although the source of the P300 has not been conclusively isolated, the most 
likely source according to brain imaging studies, intracranial recordings, and lesion 
studies is the temporoparietal junction.  A PCA solution of the P300 did in fact converge 
on this region as the source for the P300, but only when Promax was used as the 
rotation; a Varimax solution yielded a much less plausible source solution.  This study 
therefore provides additional weight for the recommendation of using Promax solutions, 
based on real data.

Conclusion

In conclusion, therefore, I would like to echo the comments by Kayser and Tenke 
regarding the renaissance of the PCA method in the ERP literature.    In order to help 
implement these recommendations, I have made PCA software tools written in Matlab 
available (http://www.people.ku.edu/~jdien/downloads.html).  I hope that readers will find
the studies by both Kayser and Tenke and by my co-authors, such as Manny Donchin, 
Kevin Spencer, and Don Tucker, to have been useful contributions to the field and 
expect that both our agreements and our disagreements with Kayser and Tenke will 
have been illuminating to readers.  I appreciate their joining me on this communal effort 
to improve the utility of ERP measures and look forward to sharing future findings.
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